Journal of Organometallic Chemistry, 306 (1986) 295–302 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

DIAZABORACYCLOPROPANE; SYNTHESE UND KRISTALLSTRUKTURANALYSE

ROLAND BOESE

Institut für Anorganische Chemie der Universität Essen, Universitätsstrasse 5-7, D-4300 Essen (B.R.D.)

und UWE KLINGEBIEL*

Institut für Anorganische Chemie der Universität Göttingen; Tammannstrasse 4, D-3400 Göttingen (B.R.D.) (Eingegangen den 18. November 1985)

Summary

The lithium salt of N, N'-bis(t-butyldimethylsilylhydrazine), CMe₃SiMe₂-NLiNHSiMe₂CMe₃, reacts with aminodifluoroboranes, Me₃SiNRBF₂ (R = CMe₃, SiMe₃) to give the N, N'-bis(silyl)-N-fluoroboryl-hydrazines I (R = CMe₃) and II (R = SiMe₃). The three-membered diazaboracyclopropanes III (R = CMe₃) and IV (R = SiMe₃) are obtained in the reaction of I and II with t-C₄H₉Li. According to crystal structure analysis of IV and NMR measurements, III and IV contain a planar NBN₂ unit with C₂ symmetry. The exocyclic B–N bond of IV is 140.6(3) pm, the endocyclic B–N bonds 142.6(3) pm and the angle in the BN₂ ring 71.8(1)°.

Zusammenfassung

Das Lithiumsalz des N, N'-Bis(t-butyldimethylsilylhydrazins), CMe₃SiMe₂-NLiNHSiMe₂CMe₃, reagiert mit Aminodifluorboranen, Me₃SiNRBF₂ (R = CMe₃, SiMe₃) zu den N, N'-Bis(silyl)-N-fluoroboryl-hydrazinen I (R = CMe₃) und II (R = SiMe₃). Die dreigliedrigen Diazaboracyclopropane III (R = CMe₃) und IV (R = SiMe₃) werden in der Reaktion von I und II mit t-C₄H₉Li erhalten. Nach der Kristallstrukturanalyse von IV und NMR-Messungen besitzen III und IV eine planare NBN₂-Einheit mit C_2 -Symmetrie. Die exocyclische B-N-Bindung von IV beträgt 140.6(3) pm, die endocyclischen B-N-Bindungen 142.6(3) pm und der BN₂-Ringwinkel 71.8(1)°.

Bei der Synthese dreigliedriger Bor-Kohlenstoff- [1,2] und Bor-Phosphor-Heterocyclen [3] konnten in den letzten Jahren grosse Erfolge verbucht werden. Unabhängig voneinander gelang im Arbeitskreis von Nöth – neben einem Azadi-

0022-328X/86/\$03.50 © 1986 Elsevier Sequoia S.A.

boracyclopropan [4] – und in unserem die Verifizierung der ersten Diazaboracyclopropane [4,5].

Hydrazino-halogenborane reagieren mit Metallorganylen, z. B. mit t-Butyllithium unter Ringschluss. Die Grösse des gebildeten Ringes wird kinetisch durch den Raumbedarf der gebundenen Substituenten beeinflusst. Voluminöse Substituenten führen zu den dreigliedrigen Diazaboracyclopropanen [4,5], kleinere Substituenten zu 1,2,4,5-Tetraaza-3,6-boracyclohexanen [6]. Neben der schrittweisen Darstellung von Diazaborcyclopropanen stellen wir in dieser Arbeit die Ergebnisse der Kristallstrukturanalyse des 1,2-Bis(t-butyldimethylsilyl)-3-[bis(trimethylsilyl)amino]diazaboriridins vor.

Ergebnisse und Diskussion

Lithiiertes N, N'-Bis(t-butyldimethylsilyl)-hydrazin reagiert in Hexan mit $F_2BN(R)SiMe_3$ ($R = CMe_3$, $SiMe_3$) zu den N, N'-Bis(t-butyldimethylsilyl)-N-fluor(trimethylsilylamino)hydrazinen I und II. Durch die Umsetzung von I bzw. II mit t-Butyllithium lassen sich die 1,2-Diaza-3-boracyclopropane III und IV darstellen. Die offenkettigen Substitutionsprodukte I und II können durch die Reaktion von (CMe_3SiMe_2NLi)_2 und F_2BN(R)SiMe_3 übersprungen werden [5] (Schema 1).

Die Ringsysteme III und IV [5] sind bei Raumtemperatur farblose Festkörper, die ohne Zersetzung schmelzen und im Vakuum unzersetzt destilliert werden können. Zu ihrer Strukturaufklärung wurden CH-Elementaranalysen, Massen- und NMR-Spektren herangezogen. Von IV wurde eine Röntgenstrukturanalyse durchgeführt.

Röntgenstrukturanalyse von IV

Ein Kristall mit den ungefähren Dimensionen von $0.53 \times 0.46 \times 0.38$ mm³, unter Inertgas in eine Kapillare eingeschmolzen, wurde auf einem Syntex R3-Vierkreisdiffraktometer mit Graphit-monochromatisierter Mo- K_{α} -Strahlung bei $-120 \pm 0.4^{\circ}$ C vermessen. Zelldimensionen: a = b = 1071.3(2) pm, $c \ 2094.0(5)$ pm, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$, $V = 2.0813(9) \cdot 10^{9}$ pm³, verfeinert aus 25 Reflexen $(25^{\circ} \ge 2\theta \ge 30^{\circ})$. Raumgruppe $P_{3_2}21$, Z = 3, $D_x \ 1.03$ g cm⁻³, $F_{000} = 714$, $\mu \ 2.17$ cm⁻¹. Datensammlung nach der 2θ : ω -scan Methode. 5385 unabhängige Intensitäten $(3^{\circ} \le 2\theta \le 67^{\circ})$, davon 4705 als beobachtet behandelt ($F_0 \ge 3.5\sigma(F)$). Strukturlösung nach direkten Methoden, Strukturverfeinerung nach Block-Kaskaden-Methoden und Darstellungen mit SHELXTL-Programmsystem [5a] auf einem NOVA 3/12-Rechner (Data General). Die CH₃-Gruppen wurden als starre Gruppen (C-H-Abstand 96 pm, H-C-H-Winkel 109.5°) mit einem isotropen Temperaturfaktor der Wasserstoffatome verfeinert, der dem 1.2-fachen der U_{ij} -Tensors des zugehörigen C-Atoms entspricht. R = 0.039, $R_w = 0.038$, $w^{-1} = \sigma^2(F) + 0.00045F^2$. Maximale Restelektronendichte 0.51 e/Å³.

Die ¹¹B-NMR-Verschiebungen beider Ringe treten im Bereich des sp^2 -hybridisierten Bors auf, so dass bei III und IV in Lösung auf eine planare NBN₂-Anordnung geschlossen werden konnte. Die scharfen ¹³C-NMR-Signale zeigen äquivalente SiMe₂CMe₃-Gruppen. Da auch Tieftemperaturmessungen – aus messtechnischen Gründen nur bis – 30°C – von IV zu keiner Aufspaltung dieser Signale führten musste die Ursache in rascher Inversion am Stickstoff oder in coplanarer Anordnung dieser Substituenten zum BN₂-Ring begründet sein. Klärung dieses Problems schaffte eine bei – 120°C durchgeführte Röntgenstrukturanalyse von IV.

Fig. 1. Molekül IV im Kristall; ohne H-Atome.

die im Kristall *trans*-ständige SiMe₂CMe₃-Substituenten zeigt, d.h. im kristallinen Zustand ist der Ringstickstoff *sp*³-hybridisiert. Die scharfen Signale im ¹³C-NMR-Spektrum werden somit durch rasche Inversion mit recht niedriger Inversionsbar-

Fig. 2. Seitenansicht von Molekül IV.

TABELLE 1

ATOMKOORDINATEN (×1)	UND ISOTROPE THE	ERMALPARAMETER	$(pm^2 \times 10^{-1})$)
----------------------	------------------	----------------	-------------------------	---

Atom	x	у	Z	U ^a
Si(1)	6060(1)	-1604(1)	981(1)	22(1)
Si(2)	2949(1)	191(1)	929(1)	27(1)
N(1)	5957(1)	-131(1)	1271(1)	23(1)
N(2)	3632(1)	0	1667	24(1)
B(1)	4944(2)	0	1667	22(1)
C(1)	5259(2)	- 1908(2)	164(1)	32(1)
C(2)	7994(2)	- 1085(2)	910(1)	31(1)
C(3)	5087(2)	-3327(2)	1464(1)	30(1)
C(4)	3506(2)	-3770(2)	1558(1)	48(1)
C(5)	5167(2)	- 4529(2)	1102(1)	46(1)
C(6)	5793(2)	-3165(2)	2122(1)	47(1)
C(7)	2057(2)	1291(2)	1033(1)	40(1)
C(8)	1629(2)	-1619(2)	609(1)	43(1)
C(9)	4438(2)	1187(2)	349(1)	39(1)

^a Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

TABELLE 2

BINDUNGSLÄNGEN (pm)

$\overline{\text{Si}(1)} - N(1)$	174.6(2)	Si(1)-C(1)	186.7(1)	
Si(1) - C(2)	186.3(2)	Si(1) - C(3)	189.5(1)	
Si(2)-N(2)	176.4(1)	Si(2)-C(7)	186.4(3)	
Si(2)-C(8)	186.1(2)	Si(2)-C(9)	185.9(2)	
N(1) - B(1)	142.6(2)	N(1)-N(1a)	167.3(2)	
N(2) - B(1)	140.6(3)	N(2)-Si(2a)	176.4(1)	
B(1) - N(1a)	142.6(2)	C(3)-C(4)	152.6(3)	
C(3)–C(5)	153.4(3)	C(3)-C(6)	153.8(2)	

riere am Stickstoff hervorgerufen. Die Röntgenstrukturanalyse von IV (Fig. 1) zeigt in Übereinstimmung mit Rechnungen von Budzelaar und von Ragué Schleyer [7] eine planare NBN₂-Anordnung mit exocyclischer NB $-\pi$ -Bindung. Jedoch sind die

TABELLE 3 BINDUNGSWINKEL (°)

N(1) = S(1) - C(1)	104.2(1)	N(1) = S(1) - C(2)	109.9(1)	
N(1) = S(1) = C(1)	104.2(1) 116.2(1)	R(1) = S(1) = C(2) C(1) = S(1) = C(2)	100.0(1)	
N(1) = S(1) = C(3)	110.2(1)	C(1) = S(1) = C(3)	109.8(1)	
C(2) - Si(1) - C(3)	108.8(1)	N(2) - SI(2) - C(7)	110.1(1)	
N(2)-Si(2)-C(8)	109.7(1)	N(2) - Si(2) - C(9)	110.6(1)	
Si(1) - N(1) - B(1)	133.3(1)	Si(1) - N(1) - N(1a)	117.3(1)	
Si(2) - N(2) - Si(2a)	123.6(1)	B(1)-N(2)-Si(2a)	118.2(1)	
N(1)-B(1)-N(2)	144.l(1)	N(1)-B(1)-N(1a)	71.8(1)	
N(2)-B(1)-N(1a)	144.1(1)	Si(1)-C(3)-C(4)	110.9(1)	
Si(1)-C(3)-C(5)	108.6(1)	Si(1)-C(3)-C(6)	111.6(1)	
B(1)-N(1)-N(1a)	54.1(1)	Si(2) - N(2) - B(1)	118.2(1)	

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Si(1)	20(1)	28(1)	18(1)	-4(1)	0(1)	13(1)
Si(2)	23(1)	34(1)	26(1)	-2(1)	-6(1)	15(1)
N(1)	23(1)	31(1)	16(1)	-6(1)	-3(1)	16(1)
N(2)	23(1)	31(1)	21(1)	-2(1)	-1(1)	16(1)
B (1)	22(1)	26(1)	20(1)	-2(1)	-1(1)	13(1)
C(1)	36(1)	40(1)	22(1)	-7(1)	-4(1)	20(1)
C(2)	25(1)	41(1)	32(1)	-3(1)	3(1)	19(1)
C(3)	32(1)	29(1)	28(1)	1(1)	5(1)	14(1)
C(4)	35(1)	41(1)	62(1)	9(1)	17(1)	15(1)
C(5)	58(1)	35(1)	50(1)	-2(1)	8(1)	26(1)
C(6)	60(1)	44(1)	31(1)	11(1)	2(1)	23(1)
C(7)	34(1)	43(1)	49(1)	5(1)	-3(1)	24(1)
C(8)	41(1)	45(1)	38(1)	-12(1)	-15(1)	18(1)
C(9)	37(1)	54(1)	27(1)	6(1)	-1(1)	23(1)

ANISOTROPE THERMALPARAMETER $(pm^2 \times 10^{-1})^a$

^a Der Temperaturfaktorexponent hat die Form: $-2\pi^2(h^2a^{\star 2}U_{11} + ... + 2hka^{\star}b^{\star}U_{12})$.

gefundenen Bindungslängen generell grösser als die berechneten. Besonders auffallend ist der Unterschied des N-N-Bindungsabstandes, der mit 167.3 um 8.4 pm grösser ist als der errechnete.

TABELLE 5

H-ATOMKOORDINATEN (×10 ⁴) U	ND ISOTROPE	THERMALPARAMETER	$(pm^2 \times 10^{-1})$

Atom	x	у	Z	U	
H(1a)	5346	- 2654	- 49	37	
H(1b)	5797	-1019	-66	37	
H(1c)	4263	-2166	180	37	
H(2a)	8057	- 1814	669	39	
H(2b)	8377	-1026	1330	39	
H(2c)	8538	-172	698	39	
H(4a)	3410	- 3066	1804	60	
H(4b)	3066	- 4670	1784	60	
H(4c)	3038	- 3897	1153	60	
H(5a)	4674	- 4677	702	58	
H(5b)	4721	- 5410	1343	58	
H(5c)	6158	-4240	1024	58	
H(6a)	5724	-2438	2361	58	
H(6b)	6784	- 2919	2093	58	
H(6c)	5248	- 4079	2332	58	
H(7a)	1706	1396	627	51	
H(7b)	2761	2223	1191	51	
H(7c)	1270	846	1330	51	
H(8a)	1402	- 1434	188	52	
H(8b)	771	- 2057	865	52	
H(8c)	2013	- 2257	580	52	
H(9a)	4012	1258	- 43	49	
H(9b)	4943	672	274	49	
H(9c)	5101	2137	504	49	

TABELLE 4

Experimenteller Teil

Die Versuche wurden in trockenem Inertgas ausgeführt. Massenspektren: CH 5-Spektrometer, Varian MAT; NMR-Spektren: Bruker WP 80 SY und AM 250-Kernresonanzgeräte. Die Spektren wurden von 30% igen Lösungen in $CH_2Cl_2/CDCl_3$ aufgenommen. Interne Standards waren TMS und C_6F_6 ; externe Standards waren BF₃·Et₂O und CH₃NO₂. Zur Molmassenbestimmung wurden Feldionisations-Massenspektren herangezogen.

Darstellung von I und II

 $0.05 \text{ mol} (\text{Me}_3\text{CMe}_2\text{SiNH})_2$ in 100 ml n-Hexan werden bei Raumtemperatur mit 0.05 mol n-C₄H₉Li (15%ig in n-Hexan) lithiiert. Anschliessend wird das Lithiumsalz mit 0.05 mol F₂BN(R)SiMe₃ in 50 ml n-Hexan ungesetzt. Der Reaktionsfortschritt wird ¹⁹F-NMR-spektroskopisch verfolgt. Nach beendeter Reaktion wird das Rohprodukt von LiF getrennt und durch Destillation im Vakuum gereinigt.

I. $C_{19}H_{49}BFN_3Si_3(433.7)$. Ausb. 16.8 g (78%); Kp. 102°C/0.01 mbar; MS: $m/z = 433 \ M^+$; ¹H-NMR: δ 0.2–0.1 SiMe₂, 0.26 SiMe₃, 0.91 CMe₃, 0.94 CMe₃, 1.33 NCMe₃; ¹⁹F-NMR: δ 76.5; ¹³C-NMR: – 3.6 SiC₂, –2.8 SiC₂, 5.7 SiC₃, 17.5 SiCC₃, 19.8 SiCC₃, 26.7 SiCC₃, 28.4 SiCC₃, 33.5 NCC₃, 54.1 NCC₃; ²⁹Si-NMR: δ – 1.09 SiMe₃ (³J(SiF) 1.2 Hz), 10.44 SiNB, 10.66 SiNNB.

II. $C_{18}H_{49}BFN_3Si_4$ (449.8). Ausb. 16.9 g (75%); Kp. 97°C/0.01 mbar; MS: $m/z = 449 \ M^+$; ¹H-NMR: δ 0.16 SiMe₂, 0.20 (SiMe₃)₂, 0.22 SiMe₂, 0.94 CMe₃, 0.97 CMe₃, 2.33 NH.

1,2-Diaza-3-boracyclopropane III und IV

0.05 mol I bzw. II in 100 ml n-Hexan werden auf -30° C gekühlt und innerhalb von 2 h mit der äquimolaren Menge t-C₄H₉Li (15%ig in n-Pentan) versetzt. Anschliessend wird die Lösung auf Raumtemperatur erwärmt, vom LiF getrennt, III destillativ und IV durch Umkristallisation aus n-Hexan gereinigt.

III. $C_{19}H_{48}BN_3Si_3$ (413.7). Ausb. 5.2 g (24%); Kp. 110°C/0.01 mbar; MS: $m/z = 413 \ M^+$; ¹H-NMR: δ 0.2 SiMe₂, 0.26 SiMe₃, 0.94 SiCMe₃, 1.32 NCMe₃; ¹³C-NMR: -1.98 SiC₂, 5.74 SiC₃, 20.0 SiCC₃, 27.9 SiCC₃, 33.4 NCC₃; ²⁹Si-NMR: δ 7.9 SiMe₃, 11.2 SiMe₂CMe₃. Gef.: C, 54.89, H, 11.51 C₁₉H₄₈BN₃Si₃ ber.: C, 55.17; H, 11.70%.

IV. $C_{18}H_{48}BN_3Si_4$ (429.8). Ausb. 16.8 g (78%); Schmp. 69°C; MS: m/z = 429 M^+ ; ¹H-NMR: δ 0.10 SiMe₂, 0.26 SiMe₃, 0.97 SiCMe₃; ¹¹B-NMR: δ 27.2; ¹³C-NMR: δ -3.34 SiC₂, 3.24 SiC₃, 19.72 SiCC₃, 27.26 SiCC₃; ¹⁴N-NMR: δ -329; ²⁹Si-NMR: 7.25, 12.88. Gef.: C, 50.19; H, 11.03. $C_{18}H_{48}BN_3Si_4$ ber.: C, 50.31; H, 11.26%.

Dank

Diese Arbeit wurde vom Fonds der Chemischen Industrie unterstützt.

Literatur

S.M. van der Kerk, P.H.M. Budzelaar, A. van der Kerk-van Hoof, G.J.M. van der Kerk und P. von Ragué Schleyer; Angew. Chem., 95 (1983) 61; H. Klusik und A. Berndt, Angew. Chem., 95 (1983) 895; C. Habben und A. Meller, Chem. Ber., 117 (1984) 2531.

- 2 R. Wehrmann, H. Klusik und A. Berndt, Angew. Chem., 96 (1984) 369; R. Wehrmann, Chr. Pues, H. Klusik und A. Berndt, Angew. Chem., 96 (1984) 372; M. Hildenbrand, H. Pritzkow, U. Zenneck und W. Siebert, Angew. Chem., 96 (1984) 371.
- 3 W. Baudler, A. Marx und J. Hahn, Z. Naturforsch. B, 33 (1978) 355.
- 4 F. Dirschl, H. Nöth und W. Wagner, J. Chem. Soc., Chem. Commun., (1984) 1533.
- 5 U. Klingebiel, Angew. Chem., 96 (1984) 807.
- 6 H. Nöth und W. Winterstein, Chem. Ber., 111 (1978) 2469.
- 7 P.H.M. Budzelaar und P. von Ragué Schleyer, Organometallics, im Druck.